Vibrational spectra, principal components analysis and the horseshoe effect
نویسندگان
چکیده
منابع مشابه
Principal-components analysis for low-redundancy encoding of speech spectra
The principal-components statistical procedure for data reduction is used to efficiently encode speech power spectra by exploiting the correlations of power spectral amplitudes at various frequencies. Although this datareduction procedure has been used in several previous studies, little attempt was made to optimize the methods for spectral selection and coding through the use of intelligibilit...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملUnderstanding the molecular information contained in principal component analysis of vibrational spectra of biological systems.
K-means clustering followed by Principal Component Analysis (PCA) is employed to analyse Raman spectroscopic maps of single biological cells. K-means clustering successfully identifies regions of cellular cytoplasm, nucleus and nucleoli, but the mean spectra do not differentiate their biochemical composition. The loadings of the principal components identified by PCA shed further light on the s...
متن کاملOnline Principal Components Analysis
We consider the online version of the well known Principal Component Analysis (PCA) problem. In standard PCA, the input to the problem is a set of ddimensional vectors X = [x1, . . . ,xn] and a target dimension k < d; the output is a set of k-dimensional vectors Y = [y1, . . . ,yn] that minimize the reconstruction error: minΦ ∑ i ‖xi − Φyi‖2. Here, Φ ∈ Rd×k is restricted to being isometric. The...
متن کاملPrincipal Components Analysis
Derivation of PCA I: For a set of d-dimensional data vectors {x}i=1, the principal axes {e}qj=1 are those orthonormal axes onto which the retained variance under projection is maximal. It can be shown that the vectors ej are given by the q dominant eigenvectors of the sample covariance matrix S, such that Sej = λjej . The q principal components of the observed vector xi are given by the vector ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vibrational Spectroscopy
سال: 2015
ISSN: 0924-2031
DOI: 10.1016/j.vibspec.2015.10.002